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Dark Multi-Soliton Solution of the Nonlinear
Schrödinger Equation with Non-Vanishing
Boundary
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The inverse scattering transform for the nonlinear Schrödinger equation in normal
dispersion with non-vanishing boundary values is re-examined using an affine parameter
to avoid double-valued functions. An operable algebraic procedure is developed to
evaluate dark multi-soliton solutions. The dark two-soliton solution is given explicitly
as an example, and is verified by direct substitution. The additional motion of the soliton
center is given by its asymptotic behavior.
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1. INTRODUCTION

The nonlinear Schrödinger equation in normal dispersion with non-vanishing
boundary (simply NLS+ equation) was solved by Zakharov and Sabat (1973), and
a particular type of solution called dark soliton solution was obtained. While the
single dark soliton solution was already given explicitly, the attempt to find the
expression of multi-soliton solution was too onerous to be done (Zakharov and
Shabat, 1972; Faddeev and Takhtajan, 1987). But the accurate expression of dark
multi-soliton solution are basic to construct a general perturbation theory for dark
solitons (Keener and McLaughlin, 1977; Kivshar and Malomad, 1989; Kaup and
Newell, 1978; Huang et al., 1999; Chen et al., 1998). In the work of Zakharov and
Sabat (1973), an affine parameter ζ was introduced as an auxiliary parameter to
avoid double-valued function of original parameter and simplify the evaluation.
The following theory should be developed in this way.

In this work, a systematic procedure is proposed to evaluate the dark multi-
soliton solutions based upon the well-known linear algebraic formulae. And the
dark two-soliton solution is given explicitly and the result is finally verified by
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direct substitution. At the end of this work, the asymptotic behavior of this two-
soliton solution is given and the effect between the two solitons composing this
solution is found.

2. PRELIMINARY

The NLS+ equation can be written as

iut − uxx + 2(|u|2 − ρ2)u = 0 (1)

with non-vanishing boundary conditions:{
u → ρ as x → −∞
u → ρeiα as x → ∞ (2)

where ρ is a positive constant. And its Lax pair is given by

L = −iλσ3 + U, U =
(

0 u

ū 0

)
(3)

and

M = i2λ2σ3 − 2λU + i(U 2 − ρ2 + Ux)σ3 (4)

In the limit of x → ∞, the L tends to

L+ = −iλσ3 + U+ (5)

where U+ = ρσ1, and the corresponding free Jost solution is

E+(x, ζ ) = (I + ρζ−1σ2)e−iκx (6)

where an auxiliary parameter ζ is introduced to avoid double-valued functions

λ = 1

2
(ζ + ρ2ζ−1), κ = 1

2
(ζ − ρ2ζ−1) (7)

In the limit of x → −∞, the L tends to

L− = −iλσ3 + U− (8)

where

U− = Q(α)U+Q−1(α), Q(α) = e−i 1
2 ασ3 (9)

and the corresponding free Jost solution is

E− = Q−1(α)E(x, ζ ) (10)

Then the Jost solutions are defined as

�(x, ζ ) = (ψ̃(x, ζ ), ψ(x, ζ )) → E+(x, ζ ), as x → ∞ (11)

	(x, ζ ) = (φ(x, ζ ), φ̃(x, ζ )) → E−(x, ζ ), as x → −∞ (12)
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As usual, the monodramy matrix T (ζ ) is introduced

	(x, ζ ) = �(x, ζ )T (ζ ), T (ζ ) =
(

a(ζ ) b̃(ζ )

b(ζ ) ã(ζ )

)
(13)

Since

κ > 0 if and only if Im ζ > 0 (14)

ψ(x, ζ ), φ(x, ζ ) and a(ζ ) are analytic in the upper half plane of complex
ζ ; ψ̃(x, ζ ), φ̃(x, ζ ) and ã(ζ ) are analytic in the lower half plane of complex
ζ . Usually b(ζ ) and b̃(ζ ) cannot be analytically continued outside the real axis.

The Jost solutions in NLS+ equation have some properties, such as

ψ̃(x, ζ̄ ) = σ1φ(x, ζ ), φ̃(x, ζ̄ ) = σ1φ(x, ζ ) (15)

and

ã(ζ̄ ) = a(ζ ), b̃(ζ ) = b(ζ ) (16)

As a single value of λ results two values of ζ , there are λ → λ and κ → −κ under
the so-called reduction transformation ζ → ρ2ζ−1. Since Q(α) is un-effected by
such a transformation, the Jost solutions have the following properties

ψ̃(x, ρ2ζ−1) = iρ−1ζψ(x, ζ ), φ̃(x, ρ2ζ−1) = −iρ−1ζφ(x, ζ ) (17)

We thus compare

φ(x, ζ ) = ψ̃(x, ζ )a(ζ ) + ψ(x, ζ )b(ζ ),

φ̃(x, ζ ) = ψ̃(x, ζ )b̃(ζ ) + ψ(x, ζ )ã(ζ ) (18)

and

φ(x, ρ2ζ−1) = ψ̃(x, ρ2ζ−1) a(ρ2ζ−1) + ψ(x, ρ2ζ−1) b(ρ2ζ−1)

φ̃(x, ρ2ζ−1) = ψ̃(x, ρ2ζ−1) b̃(ρ2ζ−1) + ψ(x, ρ2ζ−1) ã(ρ2ζ−1) (19)

using (17) and the definition of T (ζ ) in (13), and then obtain

ã(ρ2ζ−1) = a(ζ ), b̃(ρ2ζ−1) = −b(ζ ) (20)

The last ones of Equations (15) and (20) are valid only for real ζ .
The first one of Lax equations can be rewritten in the form

L̂�(x, ζ ) = λ�(x, ζ ), L̂ = iσ3∂x − iσ3U (21)

Since L̂ is Hermitian operator, its eigenvalue λ must be real. From the relationship
between ζ and λ, the discreet value ζn must be located on a upper half circle with
radius ρ centered at the origin, that is

ζn = ρeiβn , 0 < βn < π (22)
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And one should see that

ζ̄n = ρ2ζ−1
n (23)

The discreet spectrum part of a(ζ ) is

a(ζ ) = ei 1
2 α

N∏
n=1

ζ − ζn

ζ − ζ̄n

(24)

where α = −2
∑N

n=1 βn. At zeros of a(ζ ), and of ã(ζ ), there are

φ(x, ζn) = bnψ(x, ζn), φ̃(x, ζ̄m) = b̃mψ̃(x, ζ̄m) (25)

where bn = b(ζn) and b̃m = b̃(ζm), and then

cn ≡ − bn

ȧ(ζn)ζn

> 0 (26)

which should be indicated in Appendix A.
The inverse scattering transform in the reflectionless case is

ψ̃(x, t, ζ ) =
{(

1
iρζ−1

)
−

∑
n

1

ζ − ζn

cnζnψ(x, t, ζn)eiκnx

}
e−iκx (27)

and the dark soliton solution is

u(x, t) = ρ

{
1 +

∑
n

icnρ
−1ζnψ2(x, ζn)eiκnx

}
(28)

in which the time dependence relation derived from the second Lax equation of
(3) is included, that is

bn(t) = bn(0)e−i4κnλnt , cn(t) = cn(0)e−i4κnλnt , r(t, ζ ) = r(0, ζ )e−i4κλt

(29)

3. DERIVATION OF MULTI-SOLITON SOLUTION BY SIMPLE
ALGEBRAIC CALCULATION

Setting ζ = ζ̄m in Equation (27) and then considering (17), we have

iρ−1ζmψ2(x, ζm) = iρ−1ζmeiκmx −
∑

n

1

ζ̄m − ζn

cnζnψ(x, t, ζn)ei(κn+κm)x (30)

Introducing

�n = i
√

cnρ
−1ζnψ2(x, ζn), fn = √

cne
iκnx, gn = iρ−1ζnfn (31)

Equation (30) is rewritten in the matrix form

� = g − �B, �(�1, �2, . . . , �N ), g = (g1, g2, . . . , gN ) (32)
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and

Bnm = fn

ρ

i(ζ̄m − ζn)
fm (33)

Then Equation (28) turns to

ū = ρ{1 + �f T } (34)

Since

�f T = g(I + B)−1f T = det(I + B + f T g)

det(I + B)
− 1 (35)

there is

ū = ρ
det(I + B ′)
det(I + B)

(36)

in which

B ′ = B + f T g, B ′
nm = Bnm + fngm = fn

ρ−1

i(ζn − ζ̄m)
ζnζmfm (37)

Because

det(I + B) = 1 +
N∑

r=1

∑
1≤n1<n2<···<nr≤N

B(n1, n2, . . . , nr ) (38)

where B(n1, n2, . . . , nr ) are principal minors, it is easily found

B(n1, n2, . . . , nr ) =
∏
m,n

f 2
n [i(ζ̄m − ζn)]−1

∏
n<m

[i(ζ̄m − ζ̄n)][i(ζm − ζn)]ρr (39)

where n,m ∈ {n1, n2, . . . , nr}, and then there is

B(n1, n2, . . . , nr ) =
∏
n

ρ

i(ζ̄n − ζn)
f 2

n

∏
n<m

∣∣∣∣ζn − ζm

ζ̄n − ζm

∣∣∣∣
2

(40)

Similarly, we can obtain the explicit expression of det(I + B ′)

det(I + B ′) = 1 +
N∑

r=1

∑
1≤n1<n2<···<nr≤N

B ′(n1, n2, . . . , nr ) (41)

where B ′(n1, n2, . . . , nr ) are principal minors,

B ′(n1, n2, . . . , nr ) =
∏
m,n

f 2
n ζ 2

n [i(ζ̄m − ζn)]−1
∏
n<m

[i(ζ̄m − ζ̄n][i(ζm − ζn)]ρ−r

(42)
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or

B ′(n1, n2, . . . , nr ) =
∏
n

ρ

i(ζ̄n − ζn)
f 2

n ρ−2ζ 2
n

∏
n<m

∣∣∣∣ζn − ζm

ζ̄n − ζm

∣∣∣∣
2

(43)

where ρ−2ζ 2
n = ei2βn and n,m ∈ {n1, n2, . . . , nr}. Substituting them into Equation

(36), we finally obtain the expression of dark N -soliton solution.

4. EXPLICIT EXPRESSION OF DARK TWO-SOLITON SOLUTION

In the simplest case of N = 1, we have

det(I + B) = 1 + iρf 2
1

1

ζ1 − ζ̄1
, det(I + B ′) = 1 + iρ−1f 2

1
1

ζ1 − ζ̄1
ζ 2

1 (44)

and then introduce h2
1

f 2
1 = ei2κ1x

b1

ȧ(ζ1)ζ1
= h2

1
ζ1 − ζ̄1

iρ
(45)

Since ζ1−ζ̄1

iρ
is real, there is

h2
1 = e−2θ1 , θ1 = k1(x + 2λ1t) − k1x1 (46)

where κ1 = ik1, λ1 = 1
2 (ζ1 + ρ2ζ−1

1 ) is real. Finally, we obtain

ū1 = ρ
det(I + B ′)
det(I + B)

= ρ
1 + e−2θ1e−i2β1

1 + e−2θ1
(47)

which is a well-known result and could be verified by direct substitution simply
(Zakharov and Shabat, 1973).

For the dark two-soliton solution, i.e. N = 2, there is

det(I + B) = 1 + iρ

{
f 2

1
1

ζ1 − ζ̄1
+ f 2

2
1

ζ2 − ζ̄2

}

−ρ2f 2
1 f 2

2
(ζ1 − ζ2)(ζ̄1 − ζ̄2)

(ζ1 − ζ̄1)(ζ2 − ζ̄2)(ζ1 − ζ̄2)(ζ2 − ζ̄1)
(48)

Similarly, h2
1 and h2

2 are introduced as

f 2
1 = h2

1
ζ2(ζ1 − ζ̄1)(ζ1 − ζ̄2)

i(ζ1 − ζ2)ρ2
, f 2

2 = h2
2
ζ1(ζ2 − ζ̄2)(ζ2 − ζ̄1)

i(ζ2 − ζ1)ρ2
(49)

where ζ2(ζ1−ζ̄1)(ζ1−ζ̄2)
i(ζ1−ζ2)ρ2 and ζ1(ζ2−ζ̄2)(ζ2−ζ̄1)

i(ζ2−ζ1)ρ2 are real. As a result, the last term of Equation
(48) is

−ρ2f 2
1 f 2

2
(ζ1 − ζ2)(ζ̄1 − ζ̄2)

(ζ1 − ζ̄1)(ζ2 − ζ̄2)(ζ1 − ζ̄2)(ζ2 − ζ̄1)
= h2

1h
2
2 (50)
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The other two terms of Equation (41) are

iρf 2
1

1

ζ1 − ζ̄1
= h2

1
ζ2

ρ

(ζ1 − ζ̄2)

(ζ1 − ζ2)
= h2

1

∣∣∣∣ζ1 − ζ̄2

ζ1 − ζ2

∣∣∣∣ (51)

iρf 2
2

1

ζ2 − ζ̄2
= h2

2
ζ1

ρ

(ζ2 − ζ̄1)

(ζ2 − ζ1)
= h2

2

∣∣∣∣ζ1 − ζ̄2

ζ1 − ζ2

∣∣∣∣ (52)

Thus we have

det(I + B) = 1 + (e−2θ1 + e−2θ2 )

∣∣∣∣ζ1 − ζ̄2

ζ1 − ζ2

∣∣∣∣ + e−2(θ1+θ2) (53)

Similarly,

det(I + B ′) = 1 + (e−2θ1ei2β1 + e−2θ2ei2β2 )

∣∣∣∣ζ1 − ζ̄2

ζ1 − ζ2

∣∣∣∣ + e−2(θ1+θ2)ei2(β1+β2) (54)

Finally, a dark two-soliton solution is obtained by substituting all of them into
Equation (36)

ū2 = ρ
1 + (e−2θ1ei2β1 + e−2θ2ei2β2 )

∣∣∣ ζ1−ζ̄2

ζ1−ζ2

∣∣∣ + e−2(θ1+θ2)ei2(β1+β2)

1 + (e−2θ1 + e−2θ2 )
∣∣∣ ζ1−ζ̄2

ζ1−ζ2

∣∣∣ + e−2(θ1+θ2)
(55)

which has been verified by direct substitution. There is the Figure 1 about the
dark two-soliton solutions, in which the parameters are chosen as ρ = 1, β1 = π

4 ,
β2 = 3π

4 and x1 = x2 = 0.

5. ASYMPTOTIC BEHAVIOR

For the dark two-soliton solution, noticing λn is real, one could require

λ2 < λ1 (56)

which means that the soliton corresponding to λ2 is moving slower than that
corresponding to λ1. Due to Equation (22), there is then 0 < β1 < β2 < π .

In order to find the effect from the faster-moving soliton on the slower-moving
soliton, we discuss the neighborhood of the center of λ2-soliton x = x2 + 2λ2t ,
and then, in the limit of t → ∞, there is

x − x1 − 2λ1t → −∞ (57)

Since kn > 0, we have

θ1 → −∞, e−2θ1 → ∞ (58)
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Fig. 1. The dark two-soliton solution of NLS+ equation with parameters ρ = 1, β1 = π
4 , β2 = 3π

4
and x1 = x2 = 0.

that is

u2
∼= ρ

e−2θ1e−i2β1

∣∣∣ ζ1−ζ̄2

ζ1−ζ2

∣∣∣ + e−2(θ1+θ2)e−i2(β1+β2)

e−2θ1

∣∣∣ ζ1−ζ̄2

ζ1−ζ2

∣∣∣ + e−2(θ1+θ2)
(59)

Introducing

�2 = 1

2k2
ln

∣∣∣∣ζ1 − ζ̄2

ζ1 − ζ2

∣∣∣∣ (60)

Equation (59) becomes

u2
∼= ρe−i2β1

1 + e−2θ+
2 e−i2β2

1 + e−2θ+
2

(61)

where

θ+
2 = θ2 + k2�2 = k2(x − x2 − 2λ2t + �2) (62)

On the other hand, in the limit of t → −∞, there is

x − x1 − 2λ1t → ∞, e−2θ1 → 0 (63)
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and then

u2
∼= ρ

1 + e−2θ−
2 e−i2β2

1 + e−2θ−
2

(64)

where

θ−
2 = θ2 − k2�2 = k2(x − x2 − 2λ2t − �2) (65)

It should be noticed that (61) and (64) are similar to the expression of dark single-
soliton solution (47). Since discreet value of ζn must be located on a upper half
circle with radius ρ centered at the origin shown as in (22), there is∣∣∣∣ζ1 − ζ̄2

ζ1 − ζ2

∣∣∣∣ > 1, �2 > 0 (66)

which means the center of the slower-moving λ2-soliton moves additionally 2�2

correspondingly to the faster-moving λ1-soliton.
With similar procedure, we should find that the center of λ1-soliton is also

affected by λ2 soliton. Introducing

�1 = 1

2k1

∣∣∣∣ζ1 − ζ̄2

ζ1 − ζ2

∣∣∣∣ > 0 (67)

the center of λ1-soliton moves additionally −2�1 correspondingly to the slower-
moving λ2-soliton.
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APPENDIX A

From Equation (13), we have

a(ζ ) = (1 − ρ2ζ−2)−1 det[φ(x, ζ ), ψ(x, ζ )] (A.1)

and then(
1 − ρ2ζ−2

n

)
ȧ(ζn) = det[φ̇(x, ζn), ψ(x, ζn)] + det[φ(x, ζn), ψ̇(x, ζn)] (A.2)

noticing φ(x, ζn) = bnψ(x, ζn), that is(
1 − ρ2ζ−2

n

)
ȧ(ζn) = b−1

n det[φ̇(x, ζ), φ(x, ζn)] + bn det[ψ(x, ζn), ψ̇(x, ζn)]

(A.3)
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From the first Lax equation, there are

∂xφ(x, ζn) = [−iλnσ3 + U ]φ(x, ζn) (A.4)

∂xφ̇(x, ζn) = [−iλ̇nσ3]φ(x, ζn) + [−iλnσ3 + U ]φ̇(x, ζn) (A.5)

where λ̇n = ∂λ
∂ζ

|ζ=ζn
. As a result, it is not difficult to see that

det[φ̇(x, ζn)x, φ(x, ζn)] + det[φ̇(x, ζn), φ(x, ζn)x] = −iλ̇12φ(x, ζn)1φ(x, ζn)2

(A.6)

where φ(x, ζn) = (φ(x, ζn)1φ(x, ζn)2)T , that is

det[φ̇(x, ζn), φ(x, ζn)] = −iλ̇n2
∫ x

−∞
dxφ(x, ζn)nφ(x, ζn)2 (A.7)

Similarly, we have

det[ψ̇(x, ζn), ψ(x, ζn)] = −iλ̇n2
∫ ∞

x

dxψ(x, ζ1)1ψ(x, ζn)2 (A.8)

Introducing (A7) and (A8) into (A6), we finally obtain

ȧ(ζn) = −ibn

∫ ∞

−∞
ψ1(x, ζn)ψ2(x, ζn) dx (A.9)

From Equations (15) and (17), there is

ψ1(x, ζn) = −iρζ−1
n ψ2(x, ζn) (A.10)

that is

ȧ(ζn) = bnρζ−1
n

∫ ∞

−∞
|ψ2(x, ζn)|2 dx (A.11)

Thus, we have

cn ≡ − bn

ȧ(ζn)ζn

> 0. (A.12)
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